Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Macromol Rapid Commun ; 44(8): e2300012, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36854889

RESUMEN

Heterogeneous photocatalysis have been deemed as a versatile and colorful platform for exploring efficient transformation systems. Henceforth, the design of photocatalysts underpins a wide range of research interests. By virtue of synthetic versatility, stability, non-toxicity, purely organic properties, tunable semiconductive structures, and remarkable visible-light absorbance, conjugated microporous polymers (CMPs) have emerged as an attractive new class of semiconductor materials that show great potential for tackling important energy and environmental challenges. Over the past decade, immense efforts have been devoted toward the construction of CMPs-based photocatalysts for versatile photocatalytic transformations. This review aims to summarize the latest representative advances in the field of carbazolic CMPs, focusing on various design strategies for the construction of tailor-made skeletons that have direct impact on their charge dynamics and thus photocatalytic performances, especially on their specific photocatalytic efficiency for organic transformations. Scrutinizing the photocatalytic features and elucidating the related design principles, it is fully described how structure modification of polycarbazoles could have an effect on optical properties, and thus on photocatalytic performance. Furthermore, the bottlenecks that need to be addressed, and the future research directions of CMPs are identified in the area of photocatalysis.


Asunto(s)
Luz , Polímeros , Semiconductores
2.
Langmuir ; 38(47): 14439-14450, 2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36378533

RESUMEN

A four-stage oscillating feedback millireactor with splitters (S-OFM) was designed to improve the mixing performance based on chaotic advection. Three-dimensional CFD simulations were used to investigate its flow characteristics and mixing performance, and the generation mechanisms of secondary flows were examined. The results show that the mixing index (MIcup) increased with the increase in the Reynolds number (Re), and MIcup could reach 99.8% at Re = 663. Poincaré mapping and Kolmogorov entropy were adopted to characterize the chaotic advection intensity, which indicates that there is a intensity increase with the increase in Re. In addition, the results of Villermaux-Dushman experiments demonstrate that S-OFM performs excellently, and the mixing time could reach 1.04 ms at Re = 2764. Finally, S-OFM was successfully used to synthesize CdS nanoparticles with cubic hexagonal phase junctions. At a flow rate of 180 mL/min, the average particle size was 10.5 nm and the particle size distribution was narrow (with a coefficient of variation of 0.14).

3.
Artículo en Inglés | MEDLINE | ID: mdl-35549069

RESUMEN

The photoelectrocatalytic (PEC) oxidation of glycerol into highly value-added products is attractive, but it is extremely challenging to limit the oxidation products to the valuable C3 chemicals. The hole concentration and surface atomic arrangement of a photoanode can be modulated by controlling facet exposure, thus tuning the activity and selectivity. Herein, we report for the first time the formation of a WO3 photoanode with predominant exposure of {202} facets by a secondary hydrothermal method. The photoanode exhibits superior PEC glycerol conversion efficiency, giving an 80% selectivity to glyceraldehyde with a production rate of 462 mmol h-1 m-2. Also, the faraday efficiency for the C3 product reaches 98.6%. We made comparison between the {202} facets and the commonly studied {200} facets using experimental and theoretical methods. It is disclosed that the former enhances not only the adsorption and activation of glycerol via the terminal hydroxyl groups but also the desorption of glyceraldehyde.

4.
Phys Chem Chem Phys ; 23(33): 17894-17903, 2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34378575

RESUMEN

Bismuth oxyhalides (BiOX), as a typical photocatalytic material, have attracted much attention due to their unique layered structure, non-toxicity and excellent stability. However, the photocatalytic performance of BiOX is limited by their weak light absorption ability and rapid recombination of photo-generated carriers. In the present work, first-principles calculations have been performed to comprehensively explore the structural, electronic and optical properties of black phosphorus (BP)/BiOX (X = Cl, Br, I) heterostructures, revealing the inherent reasons for their enhanced photocatalytic performance. By combining band structures and work function analysis, the migration paths of photo-generated electrons and holes are obtained, proving a direct Z-scheme photocatalytic mechanism in BP/BiOX heterostructures. Moreover, the BP/BiOX heterostructures have decent band edge positions, which are suitable for photocatalytic overall water splitting. Compared with single BiOX, the light absorption performance of BP/BiOX heterostructures is significantly improved, in which BP/BiOI exhibits the highest optical absorption coefficient among the BP/BiOX heterostructures. Meanwhile, the better carrier migration performance of the BP/BiOX heterostructures is attributed to the reduction in effective mass. The present work offers theoretical insight into the application of BP/BiOX heterostructures as prominent photocatalysts for water splitting.

5.
ACS Appl Mater Interfaces ; 13(29): 34308-34319, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34279892

RESUMEN

This study highlights the facet structure control of regular NixCo3-xO4 nanoplates and interfacial modulation through elemental doping and morphologically fitted assembly of Ti3C2Tx nanosheets for high performances in OER/HER and overall water splitting. Over the resulting Ni0.09Co2.91O4/Ti3C2Tx-HT in a solution of 1 M KOH, the OER and HER overpotentials of 262 and 210 mV, respectively, are achievable at a current density of 10 mA cm-2. In the case of the overall water splitting by using Ni0.09Co2.91O4/Ti3C2Tx-HT as anode and cathode catalysts, only a potential of 1.66 V is needed to obtain a current density of 10 mA cm-2, and the catalysts can stand for a period of 70 h, remarkably outperforming the RuO2-Pt/C-based catalyst and benefiting from the intensive association and interfacial function between the Ti3C2Tx and NixCo3-xO4 nanosheets. Interestingly, a surface reconstruction from the (112) to (111) facet structure occurred upon the fine-tuned Ni doping of regular NixCo3-xO4 hexagonal nanoplates and led to a highly active catalyst surface. At x = 0.09, the amount of Ni3+ becomes the highest, which is favorable for the generation of the critical OH intermediates on NixCo3-xO4/Ti3C2Tx-HT. The current study documented the significance of the well-controlled interfacial assembly of transition-metal oxide/MXenes as an effective electrocatalyst in the OER/HER and overall water splitting processes and provided the insights into the structure-performance correlation over such kinds of precious metal-free catalysts.

6.
Chem Sci ; 12(20): 7125-7137, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-34123340

RESUMEN

The desire for a carbon-free society and the continuously increasing demand for clean energy make it valuable to exploit green ammonia (NH3) synthesis that proceeds via the electrolysis driven Haber-Bosch (eHB) process. The key for successful operation is to develop advanced catalysts that can operate under mild conditions with efficacy. The main bottleneck of NH3 synthesis under mild conditions is the known scaling relation in which the feasibility of N2 dissociative adsorption of a catalyst is inversely related to that of the desorption of surface N-containing intermediate species, which leads to the dilemma that NH3 synthesis could not be catalyzed effectively under mild conditions. The present work offers a new strategy via introducing atomically dispersed Ru onto a single Co atom coordinated with pyrrolic N, which forms RuCo dual single-atom active sites. In this system the d-band centers of Ru and Co were both regulated to decouple the scaling relation. Detailed experimental and theoretical investigations demonstrate that the d-bands of Ru and Co both become narrow, and there is a significant overlapping of t2g and eg orbitals as well as the formation of a nearly uniform Co 3d ligand field, making the electronic structure of the Co atom resemble that of a "free-atom". The "free-Co-atom" acts as a bridge to facilitate electron transfer from pyrrolic N to surface Ru single atoms, which enables the Ru atom to donate electrons to the antibonding π* orbitals of N2, thus resulting in promoted N2 adsorption and activation. Meanwhile, H2 adsorbs dissociatively on the Co center to form a hydride, which can transfer to the Ru site to cause the hydrogenation of the activated N2 to generate N2H x (x = 1-4) intermediates. The narrow d-band centers of this RuCo catalyst facilitate desorption of surface *NH3 intermediates even at 50 °C. The cooperativity of the RuCo system decouples the sites for the activation of N2 from those for the desorption of *NH3 and *N2H x intermediates, giving rise to a favorable pathway for efficient NH3 synthesis under mild conditions.

7.
Phys Chem Chem Phys ; 23(21): 12439-12448, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34031670

RESUMEN

In recent years, two-dimensional (2D) lead-free double perovskites have been attracting much attention because of their unique performance in photovoltaic solar cells and photocatalysis. Nonetheless, how thickness affects the photoelectric properties of lead-free double perovskite remains unclear. In this work, by means of density functional theory (DFT) with a spin orbit coupling (SOC) effect, we have investigated the electronic and optical properties systemically, including band structures, carrier mobility, optical absorption spectra, exciton-binding energies, band edges alignment and molecule adsorption performance of Cs2AgBiBr6 with different thicknesses. The calculated results revealed the thickness-induced band gap and optical performance for Cs2AgBiBr6. It shows a low band gap and outstanding optical absorption of visible and ultraviolet light. When the thickness is reduced to a monolayer, Cs2AgBiBr6 moves from an indirect band gap to a direct band gap. Moreover, the carrier mobility of Cs2AgBiBr6 is excellent and the exciton-binding energy increases with the decreased thickness. Importantly, an analysis of molecule adsorption and band edge alignment indicates that Cs2AgBiBr6 is prone to H2O adsorption and H2 desorption theoretically, which is conducive to the photocatalytic water splitting for hydrogen generation and other photovatalytic reactions. Our work suggests that Cs2AgBiBr6 is a potential candidate as a solar cell or a photocatalyst, and we provide theoretical explorations into reducing the layers of lead-free double perovskite materials to 2D atomic thickness for a better photocatalytic application, which can serve as guidelines for the design of excellent photocatalysts.

8.
Angew Chem Int Ed Engl ; 60(3): 1433-1440, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33006403

RESUMEN

The introduction of oxygen vacancies (Ov) has been regarded as an effective method to enhance the catalytic performance of photoanodes in oxygen evolution reaction (OER). However, their stability under highly oxidizing environment is questionable but was rarely studied. Herein, NiFe-metal-organic framework (NiFe-MOFs) was conformally coated on oxygen-vacancy-rich BiVO4 (Ov-BiVO4 ) as the protective layer and cocatalyst, forming a core-shell structure with caffeic acid as bridging agent. The as-synthesized Ov-BiVO4 @NiFe-MOFs exhibits enhanced stability and a remarkable photocurrent density of 5.3±0.15 mA cm-2 at 1.23 V (vs. RHE). The reduced coordination number of Ni(Fe)-O and elevated valence state of Ni(Fe) in NiFe-MOFs layer greatly bolster OER, and the shifting of oxygen evolution sites from Ov-BiVO4 to NiFe-MOFs promotes Ov stabilization. Ovs can be effectively preserved by the coating of a thin NiFe-MOFs layer, leading to a photoanode of enhanced photocurrent and stability.

9.
J Org Chem ; 85(19): 12430-12443, 2020 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-32929959

RESUMEN

We disclose a novel method for the synthesis of fluorescent N,N'-chelate organoboron compounds in high efficiency by treatment of aminoquinolates with NaBAr4/R'COOH in the presence of an iodine catalyst. These compounds display high air and thermal stability. A possible catalytic mechanism based on the results of control experiments has been proposed. Fluorescence quantum yield of 3b is up to 0.79 in dichloromethane.

10.
J Org Chem ; 85(13): 8533-8543, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32483961

RESUMEN

We have developed a protocol to facilitate the nickel-catalyzed decarbonyloxidation of 3-aryl benzofuran-2(3H)-ones to 2-hydroxybenzophenones under mild conditions, which is an efficient approach for the decarbonyloxidation of lactones in organic synthesis. A diverse range of substrates can undergo C(O)-O/C(O)-C bond cleavage to generate the target products in good yields. These 2-hydroxybenzophenones can be converted into a variety of compounds via reactions such as esterification, cyclization, and reduction.

11.
Inorg Chem ; 59(7): 4483-4492, 2020 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-32174112

RESUMEN

Three classical Fe-MOFs, viz., MIL-100(Fe), MIL-101(Fe), and MIL-53(Fe), were synthesized to serve as platforms for the investigation of structure-activity relationship and catalytic mechanism in the selective conversion of H2S to sulfur. The physicochemical properties of the Fe-MOFs were characterized by various techniques. It was disclosed that the desulfurization performances of Fe-MOFs with well-defined microstructures are obviously different. Among these, MIL-100(Fe) exhibits the highest catalytic performance (ca. 100% H2S conversion and 100% S selectivity at 100-180 °C) that is superior to that of commercial Fe2O3. Furthermore, the results of systematic characterization and DFT calculation reveal that the difference in catalytic performance is mainly because of discrepancy in the amount of Lewis acid sites. A plausible catalytic mechanism has been proposed for H2S selective conversion over Fe-MOFs. This work provides critical insights that are helpful for rational design of desulfurization catalysts.

12.
Nat Commun ; 11(1): 653, 2020 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-32005833

RESUMEN

The industrial synthesis of ammonia (NH3) using iron-based Haber-Bosch catalyst requires harsh reaction conditions. Developing advanced catalysts that perform well at mild conditions (<400 °C, <2 MPa) for industrial application is a long-term goal. Here we report a Co-N-C catalyst with high NH3 synthesis rate that simultaneously exhibits dynamic and steady-state active sites. Our studies demonstrate that the atomically dispersed cobalt weakly coordinated with pyridine N reacts with surface H2 to produce NH3 via a chemical looping pathway. Pyrrolic N serves as an anchor to stabilize the single cobalt atom in the form of Co1-N3.5 that facilitates N2 adsorption and step-by-step hydrogenation of N2 to *HNNH, *NH-NH3 and *NH2-NH4. Finally, NH3 is facilely generated via the breaking of the *NH2-NH4 bond. With the co-existence of dynamic and steady-state single atom active sites, the Co-N-C catalyst circumvents the bottleneck of N2 dissociation, making the synthesis of NH3 at mild conditions possible.

13.
Org Lett ; 22(3): 827-831, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-31913641

RESUMEN

A concise, one-step route to produce 3,3'-diindolylmethanes (DIMs) from simple indoles and ketones or aldehydes is reported. The key step is the ready formation of indole derivatives that involves the in situ conversion of CF3SO2Na reagent to ·CF3 under oxygen or air (1.0 atm) and UV irradiation. It is disclosed that most of the obtained DIMs show anticancer activities in human bladder cancer cell lines EJ and T24.


Asunto(s)
Aldehídos/química , Indoles/química , Cetonas/química , Rayos Ultravioleta , Alquilación , Indoles/síntesis química , Estructura Molecular , Estereoisomerismo
14.
Sci Bull (Beijing) ; 65(13): 1085-1093, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-36659160

RESUMEN

To stabilize Ru nanoparticles against sintering is an urgent problem in the utilization of Ru-based catalysts for NH3 synthesis. In the present study, we used Ru-containing ZSM-5 as seeds to crystallize ZSM-5, and the resulted Ru@ZSM-5 catalyst is highly resistant against Ru sintering. According to the results of diffuse reflectance infrared fourier transform spectroscopy (DRIFTS) and transmission electron microscopy (TEM) analyses, the average size of Ru nanoparticles is around 3.6 nm, which is smaller than that of Ru/ZSM-5-IWI prepared by incipient wetness impregnation. In NH3 synthesis (N2:H2 = 1:3) at 400 °C and 1 MPa, Ru@ZSM-5 displays a formation rate of 5.84 mmolNH3 gcat-1 h-1, which is much higher than that of Ru/ZSM-5-IWI (2.13 mmolNH3 gcat-1 h-1). According to the results of TEM, N2-temperature-programmed desorption (N2-TPD), X-ray photoelectron spectroscopy (XPS) and X-ray absorption fine structure (XAFS) studies, it is deduced that the superior performance of Ru@ZSM-5 is attributable to the small particle size and the ample existence of metallic Ru0 sites. This method of zeolite encapsulation is a feasible way to stabilize Ru nanoparticles for NH3 synthesis.

15.
Chem Commun (Camb) ; 56(7): 1022-1025, 2020 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-31867592

RESUMEN

A series of unsupported and supported vanadium phosphorus oxide catalysts were prepared by employing a new strategy, which significantly reduced the complexity of catalyst preparation. The greatly simplified catalyst fabrication benefits a greener and lower-cost process for practical applications. The currently fabricated systems showed ca. 90% target product(s) selectivity with a promising yield as well as catalyst durability.

16.
Sci Rep ; 9(1): 16988, 2019 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-31740731

RESUMEN

A new type of supported vanadium phosphorus oxide (VPO) with self-phase regulation was simply fabricated (organic solvent free) for the first time by depositing the specific VPO precursor NH4(VO2)HPO4 onto the Siliceous Mesostructured Cellular Foams (MCF) with controlled activation. The resulting materials were found to be highly efficient and selective for sustainable acrylic acid (AA) plus methyl acrylate (MA) production via a condensation route between acetic acid (HAc) and formaldehyde (HCHO). A (AA + MA) yield of 83.7% (HCHO input-based) or a (AA + MA) selectivity of 81.7% (converted HAc-based) are achievable at 360 °C. The systematic characterizations and evaluations demonstrate a unique surface regulation occurring between the MCF and the NH4(VO2)HPO4 precursor. NH3 release upon activation of NH4(VO2)HPO4 precursor together with adsorption of NH3 by MCF automatically induces partial reduction of V5+ whose content is fine-tunable by the VPO loading. Such a functionalization simultaneously modifies phase constitution and surface acidity/basicity of catalyst, hence readily controls catalytic performance.

17.
Chem Commun (Camb) ; 55(63): 9375-9378, 2019 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-31317977

RESUMEN

A solid-state mechanochemical route for rapid synthesis of MgAl layered double hydroxide (LDH) nanosheets large in surface area and decorated with abundant hydroxyl groups was developed for catalytic elimination of carbonyl sulfide and H2S, showing activity superior to those of commercial LDHs and porous metal oxides.

18.
Org Lett ; 21(13): 5152-5156, 2019 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-31247797

RESUMEN

A Cu-catalyzed protocol for cross-dehydrogenative coupling of benzofuranones with quinolines, indoles, carbazoles, and thiophene, which furnishes highly functionalized 3,3-diaryl benzofuranones bearing a three aryl quaternary carbon center at the C3 position in good yields, has been developed. A radical mechanism is proposed.

19.
Eur J Med Chem ; 177: 350-361, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31158749

RESUMEN

The relationship between chemical structure and in vitro cytotoxic activities of a series of azastibocine-framework organoantimony(III) halide complexes against cancerous (HepG2, MDA-MB-231, MCF-7 and HeLa) and nonmalignant (HEK-293) cell lines was studied for the first time. A positive correlation between cytotoxic activity and the length of N→Sb coordinate bond on azastibocine framework of same nitrogen substituent was observed. By comparison, the organoantimony(III) complex 6-cyclohexyl-12-fluoro-5,6,7,12-tetrahydrodibenzo[c,f][1,5]azastibocine (C4) exhibited the highest selectivity index, giving a IC50(nonmalignant)/IC50(cancerous) ratio of up to 8.33. The results of cell cycle analysis indicated that the inhibitory effect of C4 on the cellular viability was caused by cell cycle arrest mainly at the S phase. The necrosis induced by C4 was confirmed by the Trypan blue dye exclusion test and the increase of lactic dehydrogenase (LDH) released in the culture medium. Furthermore, evaluation of the levels of intracellular reactive oxygen species (ROS) in MDA-MB-231 cells, by quantifying the relative fluorescence units (RFU) using spectrofluorometer, indicated that cytotoxic activity of C4 is dependent on the production of ROS. This work established the correlation between cytotoxic activity and N→Sb inter-coordination, a finding that provided theoretical and experimental basis for in-depth design of antimony-based organometallic complexes as potential anticancer agents.


Asunto(s)
Antimonio/química , Antineoplásicos/farmacología , Complejos de Coordinación/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/toxicidad , Línea Celular Tumoral , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Complejos de Coordinación/toxicidad , Ensayos de Selección de Medicamentos Antitumorales , Células HEK293 , Humanos , L-Lactato Deshidrogenasa/metabolismo , Estructura Molecular , Necrosis/inducido químicamente , Especies Reactivas de Oxígeno/metabolismo , Puntos de Control de la Fase S del Ciclo Celular/efectos de los fármacos , Relación Estructura-Actividad
20.
Dalton Trans ; 48(23): 8478-8487, 2019 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-31116205

RESUMEN

A series of organoantimony(iii) halide complexes with a tetrahydrodibenzo[c,f][1,5]azastibocine framework were synthesized and employed as water tolerant Lewis acid catalysts. The results of a systematic structure-activity relationship study demonstrated that the strength of N→Sb donor-acceptor interaction could be synergistically modulated by tuning the properties of the nitrogen substituents and halogen atoms adjacent to the central antimony atom, and consequently resulted in distinct catalytic performances towards organic reactions such as Mannich, cross-condensation, cyclization-aromatization and epoxide aminolysis reaction. The fluorinated organoantimony(iii) derivatives were found to be more active than those of the chlorinated, brominated and iodinated analogues, owing to the use of an Sb-F moiety as a hydrogen bond acceptor. By comparison, the compound 6-cyclohexyl-12-fluoro-5,6,7,12-tetrahydrodibenzo[c,f][1,5] azastibocine (1d) is found to exhibit the highest catalytic activity, together with facile reusability in scale enlarged synthesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...